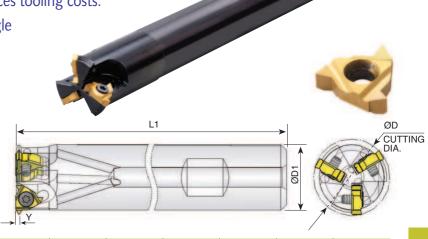


D-Thread Mill-Thread Inserts & Toolholders for machining deep threads

• Improved productivity due to multi-insert toolholders.

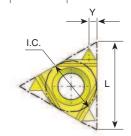

• Partial Profile, standard or U-type inserts for a wide range of threads.

• Inserts with three cutting edges, reduces tooling costs.

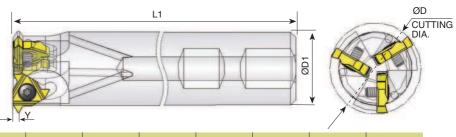
 Low cutting resistance due to the single point inserts.

 Holder allows a long overhang and includes internal coolant.

 Same insert and toolholder for both external and internal thread.


Ordering Code	Inser L	t Size I.C.	Y	D	D1	L1	No. of Inserts	Insert Screw	Torx Key
SR0023Q11	11	1/4	1	23.5	20	190	3	SE11	K11

Partial 60° Size 11

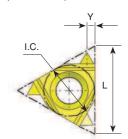

Ordering Code		Pitch	
		mm	TPI
1160D	INT.	1.0 -2.0	24-12
11000	EX.	0.75-1.5	32-14

Partial 55° Size 11

Ordering Code		Pitch TPI
1155D	INT./EX.	24-14

Coated Grade: BMA

Ordering Code	Inser L	t Size I.C.	Υ	D	D1	L1	No. of Inserts	Insert Screw	Torx Key
SR0031R16	16	3/8	1.8	31	25	225	3	SE16	K16

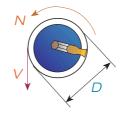

Partial 60° Size 16

Ordering Code		Pitch	
		mm	TPI
40000	INT.	2.5-3.5	10-7
1660D	EX.	2.0-3.0	12-8

Coated Grade: BMA

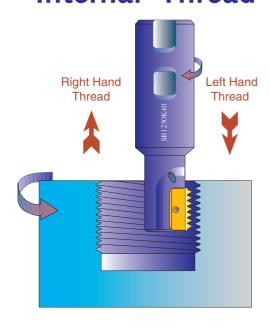
Partial 55° Size 16

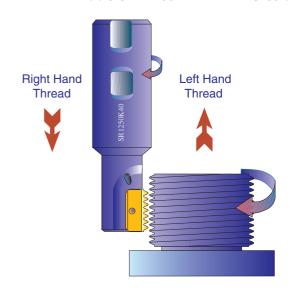
Ordering Code		Pitch TPI
1655D	INT./EX.	10-8



Conversion of Cutting Speed to Rotational Speed

Conversion of selected cutting speed to rotational speed is calculated by the following formula:

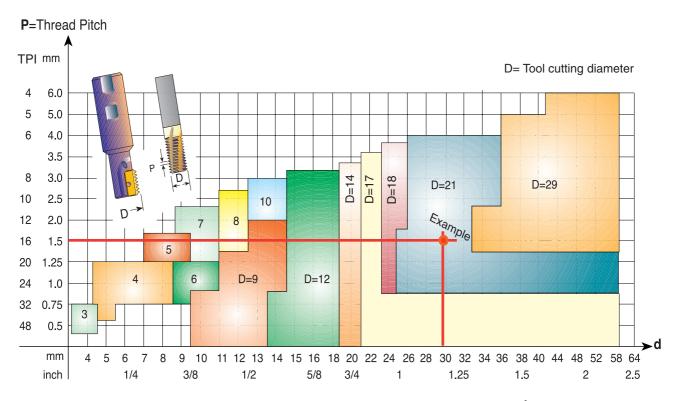

N-		120 x 1000	-1274 RPM
74-	$\pi x D$	3.14 x 30	-1274 111 141


Example: V=120 m/min D=30 mm

D=Cutting diameter

Internal Thread

External Thread

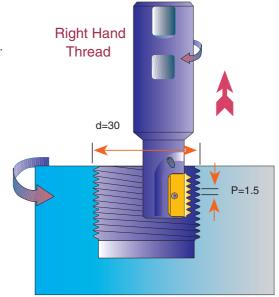


Tool Selection

For indexable and solid carbide Mill Threads

The following chart provides a fairly accurate visual selection tool for Internal Threading.

The chart is suitable for the following thread forms: ISO, UN, WHIT, NPT, NPTF, BSPT and PG.


Any tool with a small cutting diameter can produce large diameter threads.

Example: Internal thread M30 x 1.5:

Find a Milling Tool to produce d=30 mm Internal right hand ISO thread with a thread pitch P=1.5 mm.

As can be seen from the chart above, the two red lines intersect at a selected tool with a cutting diameter of D=21 mm.

Chosen toolholder: SR0021H21 Insert: 21 I 1.5 ISO MT7 d=Thread Diameter

If you need assistance, please call your local distributor and ask for help in selecting the appropriate tool as well as for a CNC program to suit your CNC milling machine.

C.P.T. Mill-Thread catalogue and CNC programming Software

This software is provided by C.P.T. to assist you, the thread milling user, to select and apply the correct tool to machine threads on CNC machining centers. The program will find tools and inserts which are suitable for your application, calculate cutting data and generate a CNC program for a variety of controls.

The software is available at our web site - www.cpt-werkzeuge.de

Example of Thread Milling CNC Program for Internal Threading

Right hand thread (climb milling) from bottom up.

Program is based on tool center.

This method of programming needs no tool radius compensation value other than an offset for wear.

$$A = \frac{Do - D}{2}$$

A =Radius of tool path Do=Major thread dia. D =Cutting dia.

General Program

G90 G00 G54 G43 H1X0 Y0 Z10 S---

G00 Z-(TOTHREAD DEPTH)

G01 G91 G41 D1 X(A/2) Y-(A/2) Z0 F---

G03 X(A/2) Y(A/2) R(A/2) Z(1/8 PITCH)

G03 X0 Y0 I-(A) J0 Z(PITCH)

G03 X-(A/2) Y(A/2) R(A/2) Z(1/8 PITCH)

G01 G40 X-(A/2) Y-(A/2) Z0

G90 X0 Y0 Z0

Internal Thread

EXAMPLE: M 32 X 2.0 (Thread depth 18 mm)
TOOLHOLDER: SR0021 H21 (Cutting dia. 21 mm)

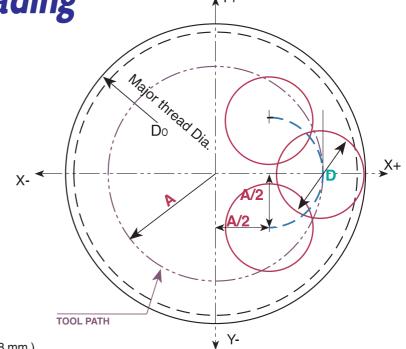
INSERT: 21 | 2.0 | ISO

A = (32-21)/2 = 5.5

G90 G00 G54 G43 H1X0 Y0 Z10 S2800

G00 Z-18

G01 G91 G41X 2.75 Y-2.75 Z0 F85 D1


G03 X2.75 Y2.75 R2.75 Z0.25

G03 X0 Y0 I-5.5 J0 Z2

G03 X-2.75 Y2.75 R2.75 Z0.25

G01 G40 X-2.75 Y-2.75 Z0

G90 G0 X0 Y0 Z0

